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1 Summary  

The endemic New Zealand kauri trees (Agathis australis (D.Don) Lindl.) are under threat by the kauri dieback 

disease caused by the pathogen Phytophthora agathidicida (PA). This project aims to develop a method 

based on remote sensing data to identify the location of kauri trees in forest areas and analyze the level of 

stress symptoms in the canopy. The Kauri Dieback Programme financed most of the research costs. The 

project is part of a PhD at the University of Canterbury and the University of Trier in Germany.  

The analysis is based on LiDAR data, RGB aerial images, a WorldView-2 image and an AISA Fenix 

hyperspectral image. The data was captured for three study sites in the Waitakere Ranges west of Auckland. 

Reference data for over 3800 crown positions and attributes were gathered during fieldwork and from aerial 

images. However, the number of crowns used as a reference in the different parts of the analysis varied 

according to the task and dataset. In high and dense forest stands, high resolution RGB aerial images 

(<=15cm pixels size) from the same season are better suited to assess stress symptoms in the canopy than a 

ground assessment. 

Spectral characteristics 

Kauri canopies with no visible symptoms show distinct spectral characteristics in the far near-infrared 

spectral bands. These are usually not integrated with standard multispectral sensors. The signature of small 

kauri crowns differs slightly from larger crowns with more open canopies. The spectral separability to 21 

other canopy species respective species groups is generally good. However, outliers caused by dead 

branches, epiphytes, shadow effects and mixed pixels in small crowns lead to confusion. Symptomatic kauri 

crowns show characteristic spectral features of decline that indicate reduced leaf water, reduced 

chlorophyll, reduced biomass and an increase in dry matter and visible carotenoids in the leaf pigments. 

These features can be described with spectral indices. 

Kauri identification 

For the identification of a combined class of "kauri and dead/dying trees" from "other canopy vegetation", a 

selection of indices from five spectral bands resulted in a pixel-based accuracy of 93.8% based on a 

representative set of 3165 crowns. The full hyperspectral range resulted in a 96.2% pixel-based accuracy. 

With only standard bands in the visible to first near-infrared (VNIR1), a combination with LiDAR attributes 

improved the classification results significantly in a crown-based analysis. On a reduced set of 1216 crowns, 

the LiDAR attributes improved the accuracy for an airborne VNIR1 multispectral sensor to 91.7%, from 83.1% 

without LiDAR data. In combination with WorldView-2 satellite data, additional LiDAR attributes enhanced 

the accuracy to 91%, compared to 82.9% without LiDAR data. However, when far near-infrared bands with 

the most characteristic spectral features for kauri are available, additional LiDAR attributes do not 

substantially improve the accuracy. A test with two stripes of data from the same LiDAR sensor that was 

used for the Northland flights (5.8 returns/m2) gave comparable results.  

Stress detection 

For the detection of stress symptoms with the 1 m pixel size of the AISA image, a minimum crown size of 3 m 

mean diameter was defined. The analysis was based on a Random Forest regression for the description of 

five stress symptom levels from 1 = non-symptomatic to 5 = dead. A combination of five indices on six bands 

in the visible to the near-infrared region (450–970 nm) achieved a correlation of 0.93. Individual models for 

pre-segmented low and high forest stands improved the overall performance. A method for an automatic 

crown- and stand-segmentation based on LiDAR height models was developed and should be further 

improved for large-area application. 

On the full spectral range, additional indices in the far near-infrared and short wave infrared region were 

selected that are sensitive to leaf water content, leaf nitrogen and cellulose / dry matter. They enhanced the 

correlation slightly to 0.94. However, these bands are located in spectral regions that are usually not 

captured by standard airborne multispectral sensors. 
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A crown size of 4 m mean diameter was defined as the recommended minimum size for the use of the WV2 

image for stress detection, to avoid mixed pixels and to identify dying top branches in small crowns. Smaller 

crowns should be analyzed in homogenous stand units. A selection of eight WV2 attributes resulted in a 

correlation of 0.89 in a crown-based Random Forest regression. In addition to the multispectral bands, the 

maximum crown height value from the LiDAR data was included in the analysis to allow for a size 

stratification.  

The resulting symptom classes need to be interpreted to relate them to the health state of the tree. The 

interpretation should consider the crown size, the growing conditions, proximity to infected stands and 

seasonal drought conditions.  

Conclusions 

For the kauri identification, a sensor with five selected multispectral bands in the visible to far near-infrared 

spectral region is recommended. The pixel resolution should ideally be <= 0.5m, to cover smaller crowns. 

Alternatively, a standard sensor with bands in the visible to the first near-infrared spectral range should be 

combined with LiDAR attributes in a crown-based analysis on accurately segmented crown polygons. 

For regular monitoring of stress symptoms, the spectral resolution of a WorldView-2 image is sufficient. 

When a WorldView-2 image is used, the reporting units for crowns smaller 4 m diameter should be 

aggregated in homogenous stand polygons, and the image should be taken with a high sun elevation to 

avoid internal shadows. More detailed correlations to certain types of stress and a crown-based analysis in 

small stands require a finer spectral and spatial resolution from an airborne acquisition.   
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2 Introduction 

2.1 Background of the project 

New Zealand kauri (Agathis australis) on the Northern Island are important natural features of New 

Zealand's indigenous forests, of high cultural significance for Māori and a major tourist attraction [4]. The 

pathogen of kauri dieback disease (Phytophthora agathidicida (PA)) was first confirmed in 2008 in the 

Waitakere Ranges [5]. But there is evidence that the pathogen has affected kauri in New Zealand already for 

decades [6-8]. Meanwhile, it has become a significant threat for kauri trees in New Zealand [9]. 

While the main distribution of kauri and PA, at broad-scales, is known, there is a need for more detailed, 

objective surveillance and mapping of existing kauri trees and infected sites [10,11]. Current monitoring 

programs are mainly based on fieldwork and photos taken from plane and helicopter [12,13]. 

 

2.2 Objective 

The main objective is to develop a method based on remote sensing data to identify kauri trees and 

symptoms of stress in the upper canopy that can be caused by PA. The study was designed to result in 

recommendations to support cost-effective monitoring that can be applied to larger areas.  

The process is structured in three tasks:  

1. Kauri identification, 

2. Detection of symptoms of stress in the upper canopy, 

3. Segmentation of stands and crown polygons. 

Remote sensing can describe stress symptoms in the canopy. However, it cannot prove the infection with 

PA. These stress symptoms can have many causes like drought, and a PA infection is just one of them. 

Spectral indices can characterize the type of stress like nutrient deficiency, loss of leaf water and loss of 

biomass. An assessment of kauri health requires an interpretation of the detected stress symptoms with 

local knowledge and other surveillance results.  

 

2.3 Framework  

The project is part of a PhD at the University of Canterbury in New Zealand and the University of Trier in 

Germany. The Kauri Dieback Program at the Ministry for Primary Industries financed most of the research 

costs, including most of the remote sensing data. Appendix 7.1 gives an overview of the supporters and 

supervisors of the project. 
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2.4 Area 

The Waitakere Ranges, northwest of central Auckland, were chosen as the study area because they cover a 

wide range of kauri trees in different growth and health classes in a range of different ecotypes[14]. Existing 

aerial images and LiDAR data and the ongoing fieldwork of Auckland Council provided a good base to 

prepare the study [12,15]. 

Three sites in the Waitakere Ranges Heritage Area (Maungaroa 5.4 km2, Kauri Grove 1.1 km2 and Cascades 

10.3 km2) were identified as suitable test areas for the data acquisition– see map in Tableau 1. They cover a 

representative selection of the major forest ecotypes with kauri in the Waitakere [14].  

A rough terrain characterizes the Waitakere Ranges from sea level to a maximum altitude of 336 m in the 

study sites. The climate is warm-temperate with humid winds from the sea [16]. Walking tracks allowed 

access to the investigated forest stands.  

 

2.5 Data and software  

2.5.1 Remote sensing and other spatial data 

The following remote sensing data was used for the analysis: 

 LiDAR data 2016: Dataset with five pulses/m2 and 35 returns/m2 on average, 0.17 m average point 

spacing, flown on the 30th of January 2016 by AAM NZ with a Q1560 LiDAR sensor (Appendix 7.2). 

 LiDAR data 2018: Two LiDAR stripes with the sensor for the Northland flight, acquired by RPS 

Australia (Appendix 7.2). 

 Aerial image 2016: RGB bands, 15 cm pixel resolution, acquired together with the LiDAR data on the 

30th of January 2016, delivered in two versions: Orthorectified on the terrain and the surface model.  

 Aerial image 2017: 3 band RGB, 7.5 cm resolution. Acquired between February and June 2017 by 

Auckland Council. Orthorectified on the terrain model. 

 Hyperspectral data: AISA Fenix sensor, 448 spectral bands (352 bands usable), 1 m spatial resolution, 

acquired on the 15th of March 2017 by Massey University.  

 Satellite image: WorldView-2 image, eight multispectral bands with a 1.8 m nadir pixel resolution, a 

PAN channel with a 0.45 m resolution, 15th of March 2017, cloud-free conditions.  

The following data sources were used as base maps and background information: 

 Topographical data like streets, tracks, land cover, houses etc. from LINZ [17]. 

 Weather and climate data from the NZ Meteorological service [18]. 

 Auckland Council data from ground truthing surveys on kauri dieback in the years 2008 – 2014 [19]. 

 Auckland Council: Walking tracks in the Waitakere Ranges. [20]   
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Tableau 1: Study area, remote sensing data 
 

 
Map: Location of the Waitakere Ranges on the 
North Island of New Zealand west of Auckland City, 
with the natural range of kauri distribution and PA-
positive samples. [21,22]. 

 
Map: Study sites and extent of the remote sensing 
datasets in the Waitakere Ranges, with the reference 
crowns marked in orange (background map: [23]). 

 

   
Cascade area:  
Some small, mainly medium to 
large kauri stands both infected 
and not infected 

Maungaroa area / Home Track: 
Small stands, partly highly 
infected 

Kauri Grove area 
Large kauri and other large 
canopy species 

 
Photos: Helicopter pictures, flown by Wild Earth Media, Auckland Council 2016 [24]. 
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2.5.2 Field reference data 

During the fieldwork in 2016 and 2017, reference crowns were mapped in circular sampling plots for denser 

stands and directly edited on a field tablet for easy to identify tree crowns in open stands (Tableau 2). The 

recorded attributes in the field include the species or species group and the position for all crowns. In 

circular stands and for kauri trees, additional attributes were recorded like the diameter, estimated density 

and coverage, optical characteristics like yellowing of leaves, the per cent of dead branches, an overall 

classification of the stress symptoms in the canopy (1= no symptoms to 5=dead) and anomalies like 

epiphytes or double stems. The circular sampling plot method required two people. In summer 2017, the 

symptom classes of the kauri trees were updated, and additional crowns were added in the field. The crown 

polygons were edited on the LiDAR height models. A 10% diameter buffer was subtracted from the outer 

edge of the crowns to avoid edge effects in the analysis. The high-resolution aerial images that became 

available at the end of 2016 and 2017 allowed the further editing of easy to identify crowns like dead trees, 

kanuka, tree ferns and flowering rata. An image guide was developed for the canopy stress symptoms based 

on RGB aerial images – see Appendix 7.3. The upper canopy trees of four permanent vegetation plots of 

Auckland University [25] were included in the analysis, after a field control of their position and an update of 

the stress symptom levels.  

For the hyperspectral dataset, the reference crowns had to be re-evaluated to select the suitable crowns 

that were correctly positioned and not influenced by shadows or sensor anomalies. Some crowns had to be 

moved to the correct position on the hyperspectral image. Therefore, the crown set used for the 

hyperspectral analysis differs from the original reference crowns that were edited on the LiDAR height 

models. 

The crown and pixel-based analysis require a high sub-meter spatial accuracy to match the LiDAR height 

models. Unfortunately, the survey points collected by Auckland Council did not match this accuracy and 

could not be directly included. However, this data was helpful in the survey preparation.  

2.5.3 Software 

Software License Use 
ArcGIS 10.5 University of Trier General GIS tasks, Spatial and 3D analysis  

ATCOR-4 University of Canterbury, purchased with 
project money, four months evaluation license 

Atmospheric correction of the 
hyperspectral image 

ATCPro University of Trier Atmospheric correction of the 
hyperspectral image 

eCognition University of Trier Crown segmentation 

ENMAP toolbox Open-source Hyperspectral analysis, indices 

ENVI University of Trier The main program for spectral analysis 

ERDAS Imagine University of Trier Orthorectification of hyperspectral image 

FLAASH A three months evaluation license as a grant 
from Exelis, University of Canterbury 

Atmospheric correction of the satellite 
images 

LAStools University of Trier LiDAR preparation and analysis 

MATLAB script Dr Henning Buddenbaum, University of Trier Destriping of hyperspectral data 

PARGE University of Trier Geographic correction of the 
hyperspectral image 

QGIS Open-source Raster analysis 

R Studio Open-source Statistical tests and diagrams 

WEKA Open-source Data mining, classification 

 

  



10 

Tableau 2: Field reference data 
 

 

Figure: Design of a circular sample plot. The 
centre point is located by a mapping grade 
GNSS for 30minutes, while the trees are 
located via distance and bearing to the 
centre.  

 

Photo: Centre station for 
circular sample plots with 
GPS, compass and vertex 
transponder. 

 

Photo: Single tree mapping with a 
Bluetooth GPS on a hiking stick in 
the backpack, connected to QGIS 
maps on a tablet with aerial images 
and crown height model. 

 

 

 

Figure: Total amount of reference crowns edited on the LiDAR crown height model. Overview over species, 

size- and symptom classes. However, the numbers of reference crowns that could be used for the analysis of 

the hyperspectral and satellite images are smaller. Crowns were removed that were outside the images or in 

the shadow of these images. 
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2.5.4 Phenological and ecological aspects of kauri and forest types in the study area 

The leaves of kauri are broad needle-shaped, 2 to 5 cm long, with a smooth leathery surface. Younger leaves 

have a lanceolate shape and a green colour that often transitions into yellow to red [4]. Declining crowns 

show yellow to brown leaf colours– see also chapter 3.3. The leaves stick out from the branches in multiple 

directions and thereby creating an uneven foliage surface.  

Young kauri, so-called "rickers", have a conical shape with dense foliage. Once the trees emerge over the 

main canopy, the crown spreads out to a dome shape, with a more open crown structure and foliage. The 

main branches in the mature trees emerge from a massive trunk and form an uneven, "bubbly" surface with 

smaller branches sticking out on the crown surface, which gives the profile of mature kauri a "shock-headed" 

appearance. The trees on the study sites grow up to ca. 40m tall and 30m wide. Taller height measurements 

were recorded in the LiDAR Crown Height Model (CHM), but they are most likely caused by an inaccurate 

terrain model or a large crown bending over a slope. 

Most of the kauri trees in the three study areas occur in kauri-
podocarp-broadleaved forest (see map to the right, code WF11) 
together with rimu, totara, miro, rata and tanekaha along the 
ridges and slopes, while kahikatea is more common in the lower 
areas and moist gullies. Only patches of mature kauri forests 
(WF10) are left in the Cascade area. Single kauri trees grow in the 
tawa-kohekohe-rewarewa-hinau-podocarp forest ecotype (WF13). 
Young kauri often grow under kanuka and manuka stands as 
nursery plants in kanuka scrub/forest (VS2) and broadleaved 
species scrub/forest (VS5). [14] 
 
The shape and size of large kauri are unique compared to 
neighbouring tree species in the study areas. The conical shape of 
smaller ricker in contrary is quite similar to the shape of young 
rewarewa, tanekaha and rimu. With the hanging, scaled leaves, 
kahikatea has a smoother leaf structure than kauri (Tableau 3). 

 
Map: Ecotypes in the study areas [14] 
 

The needles of totara and matai, although smaller than kauri leaves, show a quite similar scattered foliage. 

The new kauri leaves in spring (around September to October) have a bright light-green colour. Flowering 

rata (red) and kanuka/manuka (white) are also standing out in spring. Unfortunately, the flowering is not 

synchronized and adds more variety to the forest appearance in spring.  

While the large reference data set of kauri in different growth and symptom stages is representative for the 

Waitakere Ranges, some canopy species that are associated with kauri in other regions are 

underrepresented or missing, such as towai, kowhai, hard beech, taraire, pohutukawa, manao and yellow 

silver pine. 
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Tableau 3: Phenology of kauri and neighbouring tree species 
 

   
Photos: Juvenile kauri leaves to the left and mature leaves in the middle in two colour variations from dark 

green to a bluish variant (Waitakere, January 2016). The leaves on the right photo are from a young tree 

under drought stress (Christchurch, December 2018). 

 

Small (ricker) Medium Large 

   
DM <=4.8m DM > 4.8m and <= 12.2m DM > 12.2m 

Photos: Kauri growth classes that were used in this study, depending on the crown 
diameter (DM). Photos: Waitakere Ranges, summer 2016. 

 

Totara Miro Rimu Kahikatea Rata Tanekaha Rewarewa 

       

   
    

Photos: Selection of common neighbouring tree species to kauri in NZ kauri forests (NZ Plant Conservation 
Network [26]). 
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3 Results  

3.1 Spectral characteristics of kauri and separability from other species 

Data preparation 
The spectra of kauri with no visible stress symptom in the canopy (class 1) and of 21 other canopy species 

were extracted from the sunlit parts of the reference crowns on the hyperspectral image in ENVI. For the 

main analysis, all sunlit pixels were used to create the spectra. For test purposes, outliers from dead 

branches, epiphytes and neighbouring pixels were removed in ENVI's n-D Visualizer. The mean signatures 

and their separabilities were calculated in ENVI for both the original and the purified spectra. In the same 

way, the spectra of non-symptomatic kauri were extracted for different diameter size classes.  

Results 
Kauri spectra show distinctive characteristics in the far near-infrared (NIR) spectral region and comparably 

low values in the SWIR2 regions. The most distinctive features in the kauri spectrum are a steep ascend from 

1000 nm to 1070 nm followed by a long descent to the absorption feature around 1215 nm. [1] 

The spectra of non-symptomatic kauri crowns can be well separated from the spectra of the 21 other species 

(Jeffries-Matusita > 1.9 calculated in ENVI). The spectra of rewarewa, rimu, tanekaha, totara, miro and matai 

are most likely confused with kauri. After the removal of outliers and mixed pixels in ENVI's n-D Visualizer, 

the spectral separability of these species to kauri could be improved (see the table in Tableau 4, right 

column). [1]  

The mean spectrum of small kauri crowns (diameter smaller than 3 m mean diameter) differs from the 

spectrum of larger crowns (Jeffries-Matusita value 1.84 [27], Transformed Divergence value of 1.95). This 

effect is most likely caused by the different foliage density and crown structure of smaller crowns and single 

mixed pixels in the smaller crowns that are influenced by the reflection of neighbouring species. The 1 m 

spatial resolution of the hyperspectral image is of limited suitability for objects with a diameter smaller than 

3 m. These crowns are often misclassified due to the effect of mixed pixels and internal shadows in small 

stands.  

Conclusion 

 In addition to the visible bands, the kauri signature has distinctive characteristics in the far NIR 

region.  

 The spectra of non-symptomatic kauri crowns can generally be well separated from crown spectra of 

the other canopy species analyzed in this study.  

 The signatures of rewarewa, rimu, tanekaha totara and miro/matai are easiest confused with the 

kauri signature, especially for small crowns. After the removal of outliers and mixed pixels, they 

could be well separated. 

 The spectra from small kauri crowns differ slightly from the spectra of larger kauri, due to a different 

foliage density and the influence of mixed pixels with neighbouring areas. 
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Tableau 4: Kauri spectral characteristics and separability from other canopy species 
 

 

Figure: Mean spectra of the target classes "kauri", "dead/dying" and "other" with standard deviations 

(stdev) [1]. 

 

 
Table: Separability of kauri spectra 
from 21 trees spectra, calculated as 
Jeffries-Matusita value in ENVI. A 
value larger than 1.9 indicates that the 
signatures can be well separated. The 
left column marks the separability of 
all sunlit crown pixels; the values in 
the right column are based on a pixel 
set with removed outliers. 

Map: Visualization of the hyperspectral image information based 
on an MNF compression of all 352 bands. Healthy kauri shows a 
characteristically light blue colour, declining kauri a pink colour. 
These colours are just for illustration purposes and say nothing 
about the spectral crown characteristics. 

 

Species All sunlit 

points

Selected 

points in 

nDVIz

1 Kanukua 1.996 2.000

2 Cabbage 2.000 2.000

3 Flax 2.000 2.000

4 Karaka 2.000 2.000

5 Kahikatea 1.983 1.993

6 Kanuka flower 2.000 2.000

7 Kowhai 2.000 2.000

8 Libocedrus 1.999 2.000

9 Nikau 1.998 2.000

10 Pine 1.997 2.000

11 Pohutukawa 1.997 1.999

12 Scrub (Corposma etc.) 1.988 1.997

13 Puriri /Taraire 1.990 1.999

14 Rata 1.989 1.998

15 Rewarewa 1.968 1.995

16 Rimu 1.948 1.995

17 Tanekaha 1.860 1.992

18 Tawa 1.996 2.000

19 Totara 1.929 1.979

20 Miro/Matai 1.960 1.995

21 Tree Fern 2.000 2.000
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3.2 Kauri identification 

The aim for this part of the analysis was to distinguish both kauri trees with no to medium visible crown 

symptoms and dead or dying trees from other species with no to medium stress symptoms. The dead and 

dying trees also include other species since these cannot be separated spectrally from dead and dying kauri. 

The resulting "kauri mask" can be used as the template area for long-term monitoring of stress symptoms in 

kauri canopy. For more details, see Meiforth et al. 2019 [1]. 

3.2.1 Kauri identification with selected indices from the hyperspectral sensor 

Data preparation 
The preparation of the hyperspectral image was carried out in 6 steps [1]: 
Step 1: Destriping of the raw stripes with a MatLab script that was developed by the University of Trier 
Step 2: Atmospheric correction by adapting an individual sensor model and correcting for the atmospheric 
conditions according to the variable terrain elevation with the software ATCOR 4 
Step 3: Geographic correction in Parge to correct for the GPS position, altitude, roll, pitch, heading and offset 
Step 4: Polynomial orthorectification on the LiDAR crown height model (CHM) based on manually identified 
ground control points in ERDAS Imagine 
Step 5: Create seamless mosaics in ArcGIS 
Step 6: Post-processing in ENVI to create the finale mosaic and mask out no data pixels, define bad bands, 
wavelengths and bandwidths. 
 
Reference data: Each reference crown in the hyperspectral image was checked. If it was not possible to 

locate it on the image or it was too influenced by shadows, the crown was either deleted or moved, to 

match the correct pixel position in the image. The crowns were then sorted into three classes: Kauri 

symptom class 1-3 (no to moderate symptoms), dead or dying trees (symptom class 4-5) and other canopy 

species. The symptom classes are further explained in chapter 3.3. Shadow areas were removed with a 

brightness threshold. Edge effects were reduced by removing an internal buffer to the edge with the size of 

10% of the crown diameter.  

Bands: The 352 spectral bands were transformed with a Minimum Noise Fraction Transform (MNF 

transformation) in ENVI, and noisy bands were removed. In addition, 52 spectral indices were calculated in 

ENVI and the EnMap toolbox [28]. The values of each index were extracted for the reference pixels. 

Analysis 
The selection of the best indices to distinguish the three target classes was performed in the open-source 

data mining software WEKA. The results of several rankers and subset attribute selection methods were 

combined before attributes were excluded in an iterative process. The resulting attribute sets were tested 

with a Random Forest Classification and a 10-fold cross-validation until none of the resulting attributes could 

be removed without a significant drop in the classification accuracy.  

Different classifiers were tested in a five-fold stratified random split in 10 repetitions for the accuracy 

assessment. The Random Forest classifier in the EnMAP toolbox was best suited to handle the very 

heterogenic three classes, compared to Maximum Likelihood and Support Vector Machine.  
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Tableau 5: Hyperspectral data preparation 

 

 

 
 

 

Left: Correction for GPS 
position, altitude, roll, pitch, 
heading and offset in 
PARGE. Left stripe: before 
correction, right stripe: after 
correction 
 
 
 
Right: Orthorectification 
with a polynomial model in 
ERDAS. Above: RGB band 
combination before and 
below after the 
orthorectification. The red 
polygons mark correctly 
positioned reference crowns 
on the LiDAR CHM. 

 

 
Diagram: Spectral profiles of a tree pixel after the atmospheric correction. Five different approaches for 
atmospheric correction are compared. For the analysis, the method based on an adapted sensor model and a 
variable water vapour on the 1130nm window was chosen (white – interpolated and cyan -not interpolated). 

- White: Interpolated water vapour corrected on the 1130nm window, with sensor model adapted 
- Cyan: No interpolation, water vapour corrected on 1130nm, with sensor model adapted 
- Green: No interpolation, water vapour corrected on 940nm optimized band selection, with sensor 

model adapted 
- Purple: Variable water vapour correction, no sensor model  
- Yellow: Fixed water vapour (1.39mm), no sensor model  
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Results and interpretation 
When all 352 hyperspectral bands were used in the form of 25 bands of an MNF transformation, a pixel-

based overall accuracy of 96.2% (crown aggregated 91.8%) could be achieved to distinguish "kauri and dead 

and dying trees" from "other vegetation" for crowns larger 3 m diameter. [1] 

As a result of the attribute selection, five spectral bands could be identified, which enable the distinction of 

kauri and dead/dying trees from other forest vegetation with a pixel-based accuracy of 93.8%. The crown-

aggregated overall accuracy with 93%, is lower, because small crowns (< 3m diameter), that are more 

difficult to detect, weight more in a crown-aggregated analysis. The five selected multispectral bands cover 

both the visible range (VIS) in the 670 nm and 708 nm wavelengths, the first near-infrared range (NIR1) at 

800nm and the far near-infrared range (NIR2) 1074 and 1209 nm. [1] 

The 1 m pixel image is not suitable to detect kauri crowns smaller than 3 m mean crown diameter due to the 

effect of mixed pixels (see table below). In dense stands with small trees, shadows cause an additional 

problem for the classification. The main species that are incorrectly classified as kauri tend to have a similar 

"rough" foliage or needle-like leaves such as rimu, tanekaha, rewarewa, tōtara, miro and kawaka. Other 

species that are easily confused with small kauri have similar conical shapes in smaller growth stages such as 

tanekaha, rimu, kahikatea and rewarewa. 

Conclusions 

 With an overall pixel-based accuracy of 96.2% (crown aggregated 91.8%) on all hyperspectral bands, the 

kauri and dead/dying trees can well be distinguished from other forest vegetation. 

 A selection of five spectral bands from the hyperspectral sensor in the visible to far NIR region performs 

well to distinguish the kauri and dead/dying trees from other forest vegetation (pixel-based accuracy 

93.8%, crown aggregated 93.0%). 

 The 1 m pixel size of the hyperspectral image causes problems with mixed pixels in crowns with a 

diameter size smaller than 3 meters. For the monitoring of small crowns, an image with a higher spatial 

resolution (<=0.5m) should be used. If a larger pixel size is necessary, the mapping unit for small crowns 

should be defined as homogenous stand segments. 

 Kauri gets most easily confused with species with a spiky or "rough" foliage like rimu, tanekaha and 

totara. Moreover, species with similar conical shapes in smaller growth stages such as tanekaha, rimu, 

kahikatea and rewarewa get confused with small kauri.  

 The geographic and atmospheric correction of the hyperspectral was very elaborate and required expert 

knowledge. 

Table: Overall accuracies for a Random Forest classification for three classes (kauri <> dead/dying <> others) 

and two classes, with kauri and dead/dying aggregated in one class. The accuracies are given with standard 

deviations for a pixel-based, and a crown aggregated analysis. Pixel-based training and test pixels were 

randomly selected on all crowns on five bands (10 nm bandwidths) and a separated analysis for low and high 

stands.  

 2 classes 3 classes Users Accuracy Producers Accuracy 

 all DM >=3 m < 3 m all DM >=3 m < 3 m kauri dead other kauri dead other 

Pixel-
based 

 

93.4 
(0.1) 

93.8 
(0.1) 

69.0 
(2.1) 

91.3 
(0.1) 

91.7 
(0.1) 

66.6 
(2.0) 

94.6 
(0.2) 

80.3 
(0.7) 

88.3 
(0.3) 

94.8 
(0.2) 

52.1 
(1.4) 

94.7 
(0.3) 

Crown-
aggre-
gated 

89.7 
(1.2) 

93.0 
(1.3) 

72.6 
(4.8) 

87.3 
(1.2) 

90.8 
(1.3) 

68.3 
(4.4) 

94.0 
(0.9) 

75.0 
(3.8) 

84.4 
(1.9) 

87.6 
(1.9) 

74.4 
(3.8) 

91.2 
(1.8) 
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Tableau 6: Kauri identification with five selected bands 
 

  
(a) (b) 

  
(c) (d) 

  
(e) 

 

(f) 

 

 
Maps: Results of RF classification with a 5-fold stratified random split for the training and test data 10 

repetitions. Overview (left) and detailed maps (right) for the Cascades (a, b), Maungaroa (c, d) and Kauri 

Grove area (e, f). The numbers indicate the stress symptom classes in kauri crowns (1 = non-symptomatic, 5 

= dead). [1] 
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3.2.2 Combined optical and LiDAR data for kauri identification 

The aim was to test the performance of optical datasets in combination with LiDAR data to distinguish kauri 

and dying trees from other canopy tree species in a crown-based analysis.  

Data preparation 
The reference crowns (total 1216) were located on both the LiDAR data and the sunlit areas of the optical 

data. Spectral indices were derived from three optical datasets: 

 the 5 selected bands from the airborne hyperspectral sensor in the visible to far near-infrared (VNIR2);  

 4 bands of an airborne multispectral sensor (HiRAMS) and a 3-band red-green-blue (RGB) aerial image 

(HiRES) in the visible to first near-infrared range (VNIR1); and  

 8 multispectral bands of a WorldView-2 satellite image in the VNIR1 range. 

Crown-based LiDAR attributes were calculated both on the original point cloud, spike-free digital surface and 

crown height models [29] and derived raster layers in LAStools, ArcGIS and QGIS/GRASS. The statistics are 

related to the shape and volume of the crown, measures of height, surface roughness, derived from the 

slope and textures in different directions, the crown density and coverage. The LiDAR attributes also include 

intensity values and thereby spectral information.  

The eight multispectral bands of the WorldView-2 (WV2) image cover the VIS and first NIR areas up to 
1040nm wavelengths (Tableau 7). The spatial resolution of the multispectral bands at nadir is 1.8m, and the 
black and white PAN channel has a nadir resolution of 0.45m. The image was corrected in four steps: 
1. The multispectral and PAN images where orthorectified with the included Rational Polynomial 

Coefficients (RPCs) points on a 1m DTM.  
2. The multispectral image was atmospherically corrected with FLAASH in ENVI  
3. The 2m multispectral bands were pan-sharpened with a Gram-Schmidt Spectral sharpening in ENVI. An 

attempt with a Hyperspherical Color Sharpening (HCS) in ERDAS resulted in lower accuracy.  
4. The resulting pan-sharpened image was orthorectified with ground control points in ERDAS Imagine to 

match the crown polygons. The mean control point error for the WV2 image in the three study areas 
was an RMSE of 0.87 m (X 0.57 m, Y 0.66 m). 
 

For the WV2 image, 120 attribute layers were calculated in ENVI, the EnMAP toolbox and QGIS/GRASS from 

the original eight multispectral bands, including spectral indices, ratios, MNF and PC transformations, 

curvatures and textures. The attributes from the optical data were aggregated for each crown as mean and 

standard deviation for the spectral indices and in addition also as median, range and variance for the LiDAR 

data. 

Analysis 
The attribute selection for the three target classes "kauri", "dead/dying" and "other" was performed for 

each dataset in WEKA in a similar process as described above for the hyperspectral attribute selection. The 

accuracies for the different data combinations were analyzed in WEKA with a Random Forest classification in 

a 10-fold cross-validation.  

Results and interpretation 
LiDAR data alone resulted in an accuracy of 87.7% for the classification of the three target classes. The 

sensors with bands in the VNIR1 range performed lower with 83% accuracy for the HiRAMs and HiRES data 

and 82% for the satellite image1 (Tableau 8).  

A combination with LiDAR attributes improved the classification results significantly to 91% respective 90%. 

However, the 93% accuracy of the 5-band VNIR2 combination that includes the most characteristic spectral 

                                                           
1 An earlier pixel-based WorldView-2 analysis for kauri identification with over 90.000 training pixels and 100.000 test 
pixels for all crown sizes, including crowns < 3m diameter, resulted in an accuracy of 80.25% for two classes 
(kauri/dead/dying <> other) and 79.03% for three classes (kauri <> dead/dying <> other). 
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features for kauri in the far near-infrared could not be improved with additional LiDAR attributes. A test with 

two stripes of data from the same LiDAR sensor that was used for the Northland flights (5.8 returns/m2) gave 

comparable results. The accuracies to distinguish the aggregated class "kauri and dead/dying" from "other 

canopy species" are about 1 to 2% higher than the analysis with three target classes.  

Dead trees with a skeleton shape can be distinguished from dead trees with a dense canopy such as 

kanuka/manuka by a combination of the LiDAR intensity values with a raster variance attribute. 

The requirement that the reference crowns had to match spatially with all datasets reduced the suitable 

amounts of small crown sizes for this analysis. An earlier analysis with a higher number of smaller crowns 

resulted in slightly lower accuracies2.  

Conclusion 
LiDAR attributes can significantly enhance the identification of kauri and dead and dying trees with standard 

bands in the VNIR1 spectral range, given that the datasets are accurately spatially aligned and that the 

crowns are correctly segmented for a crown-based analysis. However, when the most characteristic spectral 

bands for kauri detection in the far near-infrared are available, additional LiDAR attributes do not enhance 

the accuracy. A test with the LIDAR data flown as part of the Northland data acquisition (Appendix 7.2) for a 

smaller area, gave comparable results. 

 

Tableau 7: WorldView-2 satellite data 
 

 

 
Figure: WorldView-2 – spectral bands and spatial resolution 
  

                                                           
2 An earlier analysis only looked at the combination of the 5 bands (visible to far near-infrared) and an RGB image with 
LiDAR attributes to distinguish the three target classes with a total of 2271 reference crowns larger 3m diameter. Only 
LiDAR attributes resulted in an accuracy of 86.4%. Additional bands from an RGB aerial image enhanced the accuracy to 
87.56%. The performance of the 5 bands could be enhanced from 90.04% with additional LiDAR data to 93.8%.  
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Tableau 8: Kauri identification: Optical & LiDAR data (crown-based) 
 

  
(a) (b) 

Figures: The diagrams show the accuracies of crown-based Random Forest classifications in WEKA with a 10-

fold cross-validation on different optical datasets with and without additional LiDAR attributes. The analysis 

was performed for (a) three classes ("kauri", "dead/dying" and "other canopy species") and (b) 2 classes 

("kauri and dead/dying", "other canopy species"). The optical datasets include the five selected bands from 

the hyperspectral sensor in 10 nm bandwidth, 4-bands from a Hirams multispectral sensor with 3-band aerial 

image (HiRES) and the 8-band WorldView-2 satellite data. 

 

 
 

(a) Five multispectral bands selected from the 
hyperspectral sensor 

(b) Three red-green-blue aerial bands and four 
bands from the Hirams multispectral sensor 
 
 

  
(c) WorldView-2 satellite image, eight multispectral 
bands 

(d) Overview size and target classes for the 
reference crowns used in this analysis. 
 

Figures: Positions of spectral bands from the three optical datasets used in this analysis (a) to (c) in relation 

to the mean spectra of kauri (red), dead and dying trees (stippled) and other canopy species (black). The 

diagram (d) gives an overview of the number of reference crowns per target class and size class from small 

to large.   
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3.3 Detect symptoms of stress in the canopy 

3.3.1 Physiological processes and visible symptoms in infected kauri canopies  

The kauri dieback disease is caused by the soil-borne pathogen "Phytophthora agathidicida" [30]. It enters 

the kauri roots, spreads in the tissue and blocks the transport of nutrients and water to the canopy [7]. The 

first effects on the leaf level is a decrease in the leaf water content and photosynthetic activity which 

eventually leads to degradation and withdrawal of the chlorophyll content. At this stage, the first visible 

symptoms in the canopy are yellowing and browning of leaves. In the next stage, the tree will drop the 

leaves, the canopy loses its overall biomass, internal crown shadows increase, and bare branch material 

becomes more visible, starting with the small top branches. Eventually, the tree drops all the leaves and 

later also branches until only a skeleton is left. These symptoms can also have other causes such as drought 

stress or other pathogens. The remote sensing analysis is only able to detect symptoms that are correlated 

with the occurrence of the disease, but it cannot prove the disease itself. 

3.3.2 Spectral characteristics of stress symptoms in kauri canopies 

Data preparation 
The recorded attributes in the field included the stem position, the cardinal crown spread, the stem 

diameter at breast height [31], the canopy base height, an estimated crown density and a foliage coverage 

[32]. Optical characteristics like the yellowing of leaves and anomalies like epiphytes or double stems were 

noted, and each recorded kauri was documented with a canopy photo. Dead branches were documented in 

six percentage classes. Stress symptoms in the canopy were assessed in 5 symptoms levels from 1 = "non-

symptomatic" to 5 = "dead", corresponding to the classification scheme of Auckland Council. The final 

assessment of stress symptoms was based on an evaluation of both the fieldwork and visible stress 

symptoms on RGB aerial images from 2016 and 2017. In high and dense stands the aerial images from 2016 

and 2017, were better suited as a reference for the canopy symptoms than the ground field data. An 

assessment scheme for the interpretation of visible stress symptoms on RGB aerial images in five symptom 

levels was developed (see Appendix 7.3), to secure an objective and coherent assessment. It was applied 

equally to kauri crowns of all size classes without any interpretation of their health state.  

The spectra of the sunlit part of the crowns in different symptom stages were extracted from the 

hyperspectral image in ENVI. For this analysis, only crowns from kauri and dead/dying trees larger 3 m crown 

diameter were used. 

Results 
The spectral signatures of declining kauri show the expected features of stress in vegetation [2]: 

 Higher blue and red reflection, lower "green peak" due to reduced chlorophyll absorption 

 Lower reflection in the NIR region due to reduced leave biomass  

 Lower water absorption "valleys" due to a higher amount of dry matter and a loss of leaf water content. 

(There was still a lot of water absorption on the dead trees because the forest was moist during the 

acquisition and the spectra include green undergrowth.) 

 Higher reflection in the SWIR 1 and 2 caused by higher amounts of cellulose, lignin and plant litter 

The stress symptom levels need to be interpreted to translate them into an assessment of tree health. This 

interpretation needs to consider the size of the crown, the location, e.g. the proximity to infected trees, the 

growing conditions, e.g. the depths and moisture conditions of the soil or the exposure to sea salt and 

seasonal aspects like the influence of a drought. Smaller kauri crowns show different stress symptoms than 

larger crowns [2]. A small patch of a dead branch in a small tree can already be a severe health risk when it is 

caused by a dying top branch. In contrast, the larger kauri crowns show a certain amount of branch material 

even when they are still healthy. The first symptom classes indicates, therefore, a more severe health state 

for a smaller tree than for a larger tree crown. 



23 

Conclusion 

 Declining kauri show characteristic stress features in both the VIS, NIR and SWIR regions of the spectra. 

 A stressed kauri loses its characteristic kauri features and will be easier confused with other species. 

 For most dead and dying crowns, it is not possible to identify if it is a kauri tree with optical data unless 

there is healthy foliage left. 

 The spectral response in small kauri for different stress levels differs from the response in large crowns.  

 High-resolution aerial images are better suited as a reference for the assessment of canopy symptom in 

dense stands with high trees than ground-truthing. 

 The stress symptom levels detected by remote sensing need to interpreted to translate them into an 

assessment of tree health. 

 

Tableau 9: Stress symptoms in the kauri spectra 

 

 

Figure to the left: Mean spectra 
(bold signatures) and standard 
deviation (stdev, thin signatures) 
of kauri in three symptom levels: 
Non-symptomatic (level 1, 
green), medium symptoms 
(level 3, orange) and dead trees 
(level 5, red). The number of 
pixels (pix) for the different 
levels is given in parentheses. [2] 
 
 
 
 

 
 

Photos: Aerial images (2017) of large kauri crowns in different stages of stress symptoms (see assessment 

scheme in Appendix 7.3).  

  

Green: No to slight 
symptoms (level 1 -2) 

Orange: Medium symptoms 
(level 3) 

Red: Dead or dying  
(level 4 – 5) 
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3.3.3 Detection of stress symptoms with selected vegetation indices from the 

hyperspectral image 

The aim of this analysis was to develop a method to describe canopy stress symptoms of kauri crowns based 
on vegetation indices from selected bands of the hyperspectral image. Vegetation indices are combinations 
of spectral bands that are sensitive to specific spectral plant properties. For more details, see Meiforth et al. 
2020a [2]. 

 
Data preparation and analysis 

For the detection of stress symptoms, mean crown values were calculated on an initial selection of 95 
spectral indices from the hyperspectral image. The sunlit parts of the crowns were defined with a brightness 
layer. Only crowns larger 3 m diameter were included for the analysis based to avoid mixed pixels on the 
image with a 1 m pixel size. These values were then combined with the crown-based symptom levels 
(chapter 3.3.2). The index selection was carried out in WEKA according to the method described in chapter 
3.2.1. The crown-based analysis was performed as a Random Forest regression, which outperformed other 
regression algorithms [2].  
 
Results of a crown-based analysis 
Five indices on six bands in the visible to near-infrared region (450–970 nm) achieved a correlation of 0.93 
with a Random Forest regression for the description of five stress symptom levels from non-symptomatic to 
dead. A stratified approach with individual models for pre-segmented low and high forest stands improved 
the overall performance. [2] 
 
The selected indices are indicators of leaf pigments and photosynthetic activity (Normalized Difference VI–
Aparicio, NDVI-A; Gitelson and Merzlyak Index 2, GM2 and a modified Ratio VI, mRVI) and canopy water 
content (Water Band Index, WBI) (see Tableau 10). The Normalized Difference Vegetation Index (NDVI-A) in 
the near-infrared/red spectral range was identified as the most important band combination to describe the 
full range of stress responses. In the more advanced stages, the loss of foliage and branch material causes 
structural changes and a further loss of canopy water, which is captured in the selected WBI. Pigment-
sensitive indices with bands in the green, red and red-edge (GM2, mRVI) spectral ranges are more important 
for describing first stress symptoms and stress responses in smaller trees with denser foliage. [2] 
 
On the full spectral range, additional indices were selected, which are sensitive to leaf water content (Leaf 
Water Vegetation Index), leaf nitrogen (Normalized Difference Nitrogen Index) and cellulose / dry matter 
(Short-wave Infrared Green Vegetation Index). They enhanced the correlation slightly to 0.94. However, 
these bands are located in spectral regions that are usually not captured by standard airborne multispectral 
sensors. For more information on these indices, see [2]. 
 
The same five multispectral bands that were already selected for the kauri detection also performed well for 
stress detection, with an overall correlation of 0.93 for five stress levels. The combination can be further 
improved for small crowns by adding a band in the green spectral range. However, this combination is 
adapted to the characteristic spectral features of kauri with bands in the far near-infrared and should be 
tested before using it for stress analysis in other tree species. [2] 
 
This method requires a prior segmentation of crown polygons. So far, it was conducted on the reference 
crowns. A combination of automatically selected crown polygons based on the LiDAR data might result in a 
lower accuracy. 
 
First results of a pixel-based analysis 
The use of the selected indices in a pixel-based analysis showed a good match compared to stress symptom 
patterns on aerial imagery. A first test of the pixel-based approach with a Random Forest regression on all 
crown sizes (including <3 m diameter) and bands in the full spectral range resulted in a correlation 
coefficient of 0.89 in a 10-fold cross-validation. A crown-based aggregation of the results could enhance the 
correlation to 0.91 for all crowns and 0.93 for crowns with a diameter larger 3 m. However, the pixel-based 



25 

approach should be further tested for the selected bands in the visible to NIR1 spectrum, which are easier to 
implement.  
 
Conclusion 

 For a 1 m pixel size in the image, the minimum recommended crown diameter is 3 m for the stress 

detection. Smaller tree crowns should be analyzed in homogenous stand units, or with a optical data in 

a higher spatial resolution. 

 The best correlation to the symptom classes can be achieved with indices on the full spectral range, 

with a correlation coefficient of 0.94 in a crown-based Random Forest regression. 

 With six standard multispectral bands in the VNIR1 spectral range, a correlation of 0.93 can be 

achieved.  

 The five multispectral bands that were selected for the kauri identification result in a crown-based 

correlation of 0.93. An additional green band and a test for the use in other species is recommended. 

 A stratification into different crown sizes improves the results. This can be done by a separated analysis 

of crowns in low and high forest stands, or in separated crown size classes.  

 A crown-based analysis achieves higher correlations than a pixel-based analysis. However, it requires a 

prior crown segmentation, which introduces additional errors. The pixel-based approach should be 

further tested.  
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Tableau 10: Detection of stress symptoms with selected vegetation indices 

 

 

 

 
Aerial image 2017 

 

 NDVI-A  

 

 

 
mRGI  WBI 

Figures: Aerial image and selected vegetation indices (description see table below; red=high values, blue 

=low values) in the visible to NIR1 spectral range with crown polygons and stress symptom classes (1=no 

symptoms to 5=dead). 

 

Table: Selected Vegetation indices (VI) for the analysis of stress symptoms in kauri crowns in the visible to 

near-infrared bands (VNIR1). An "m" indicates that wavelengths had been slightly modified compared to the 

cited literature. 

Index Abbr.1 Equation Source Name, Association 

mRGI = 685/550 (original: 690) [33] Red-Green Pigment Index (leaf pigments) 

mNDVI-A 
= (900 − 685)/(900 + 685)  

(original: 680) 
[34] 

Normalized Difference VI–Aparicio (broadband 

greenness) 

GM2 = 750/700  [35] Gitelson and Merzlyak Index 2 (chlorophyll) 

mRVI = 750/680 (original: 745, 645) [36] Ratio VI (chlorophyll content) 

WBI = 900/970 [37] Water Band Index (canopy water) 
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Tableau 10 (continued): Detection of stress symptoms with selected vegetation 

indices 
 

  
(a) (b) 

 

  
(c) 

 

(d) 

 

Figures: Resulting maps (a, c) and corresponding RGB aerial images (b, d) (2016) [38][37] of a pixel-based 

application of the 6-band VNIR1 index combination for two forest stands with marked reference crowns and 

their reference symptom class values. The analysis was carried out as a Random Forest regression in the 

EnMAP toolbox [28] on selected indices raster's for the full spectral range. 
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3.3.4 Detection of stress symptoms with WorldView-2 satellite data 

The aim of this analysis was to test the suitability of WorldView-2 satellite data for stress detection in kauri 
crowns. For more details, see Meiforth et al. 2020b [3]. 
 
Data preparation 
The analysis is based on a selection of 1089 crown polygons of kauri and dead/dying trees on the 

WorldView-2 image (WV2) with more than 50% sunlit area. The crown polygons were manually edited on 

the LiDAR crown height model. The stress symptoms assessment was based on fieldwork and an 

interpretation of aerial images, according to a method described in chapter 3.3.2 and Appendix 7.3 [2]. For a 

more detailed evaluation of the first stress symptoms, the stress levels 1 to 3 were refined in half-steps.  

Analysis 
Spectral (43) and textural (111) attributes were calculated as raster on the eight pan-sharpened 

multispectral WV2 bands with the band math tool in ENVI. For the crown-based analysis, the mean and 

standard deviation of each raster was calculated on the sunlit part of the crown polygons. The maximum 

crown height value from the LiDAR data was included in the analysis to allow for a size stratification. The 

attribute selection was performed in the software WEKA according to the procedure described in chapter 

3.2.1, [3]. The analysis is crown-based with a Random Forest regression.  

Results of a crown-based analysis 
A size of 4 m mean diameter was defined as the recommended minimum crown size for the use of the WV2 

image for stress detection, to avoid mixed pixels and to identify dying top branches in small crowns. A 

selection of eight WV2 attributes resulted in a correlation of 0.89 (Tableau 11).  

The most important attributes are a combination of red/NIR1 bands in a Normalized Vegetation Index 

(NDVI_75), followed by a ratio of the red and green bands (Red-Green Ratio Index (RGRI)) and the standard 

deviation of the first band of an MNF transformation. Mean crown values of a Green NDVI (gNDVI) with red-

edge and green bands, the red-edge band, and a brightness layer were also selected. Further attributes 

include the mean value of a seven-pixel kernel of the PAN band and the range of a three-pixel kernel on the 

NIR1 band. 

First test results of a pixel-based analysis 
In an earlier analysis for all crown sizes, a pixel-based approach resulted in a Random Forest correlation of 

0.85 with 15 selected attributes. The use of a pixel-based analysis with WV2 data should be further tested. A 

challenge was the generation of defined training pixels with the crown-based reference data since declining 

crowns often show a heterogeneous symptom pattern. The pixel-based results might be improved by 

applying a minimum crown size, the generation of training data from mean crown values or pixels from 

crowns with homogenous stress symptoms throughout the full crown polygon. 

Conclusion 

 The WorldView-2 image is suited to monitor changes in stress symptoms in the kauri canopy with a 

crown-based correlation coefficient of 0.89 in a Random Forest Regression for crowns of at least 4 m 

diameter.  

 The minimum recommended crown diameter is 4 m for the use of the 1.8 m resolution in the 

WorldView-2 multispectral bands, even after they are pan-sharpened to 0.5m. Smaller crowns should 

be analyzed in homogenous stand segments. 

 This method requires a prior segmentation of crown polygons. So far, it was conducted on the manually 

edited reference crowns. A combination of automatically selected crown polygons based on the LiDAR 

data might result in lower accuracy. A pixel-based analysis should be further tested.   
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Tableau 11: Detection of stress symptoms with a WorldView-2 image 
 

  

 

Maps: Reference crowns in two forest stands in the Cascade area. The labels indicate the actual 
stress levels (left number) and the predicted stress levels (right number) on an NDVI background 
raster (bands 5, 7). The predicted values are based on five stress levels with refined first symptom 
stages and WV2 attributes according to the table below. 

Table. Selection of WV2 attributes and their importance for a description of the seven-level 
reference scheme. The maximum crown height value was added for crown stratification. The 
attribute importance (imp.) for the RF regression was calculated as the average impurity decrease 
and converted to the percentage. 

Abbr. 
Att. 

Imp. % 
Correla

tion 
Crown 

Statistic 
Description Algorithm Source 

NDVI 32.5 −0.83 mean 
Normalized Difference 
Vegetation Index 

(b7 − b5)/(b7 + b5) 1 [39,40] 

RGRI 25.0 0.79 mean Red-Green Ratio Index b5/b3 1 [41] 

MNF1 12.6 0.68 st. dev. 
1st band of a minimum noise 
fraction (MNF) transformation 

 [42] 

NDVIg 9.2 0.70 mean green NDVI (b6 − b3)/(b6 + b3)) 1 [43] 

b7O3rg 4.3 −0.05 mean 
range of a 3 × 3 kernel of band 
7 

 [44] 

Bright 3.9 −0.14 mean brightness band 
(b2 + b3 + b5 + b7)/4 

1 
[45] 

b06 3.7 −0.15 mean mean of band 6 (red-edge)   

PO7mn 2.8 −0.21 st. dev. 
mean of a 7 × 7 kernel of the 
panchromatic (PAN) band 

 [44] 

CHM 5.8 −0.18 max 
maximum height on a CHM 
raster (1 m freeze distance) 

 [46] 

1 The variables marked with "b" indicate the band numbers of the WV2 image. 
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3.3.5 Improving optical stress analysis with LiDAR data  

The aim of this analysis was to if additional LiDAR data can improve stress detection with optical data in kauri 
crowns. 
 
Data preparation 
The use of LiDAR data to improve canopy stress detection with optical data for kauri and dead/dying trees 

was tested in two setups: 

 with five selected bands from the hyperspectral sensor (1 m pixel resolution) on the full spectral 

range ("multispectral bands") on 1280 crowns with a minimum crown size of 3 m. 

 and with attributes from the WorldView-2 image (1.8 m original pixel resolution, pan-sharpened to 

1.8 m) for 1089 crowns with a minimum crown size of 3 m and 895 crowns with a minimum crown 

size of 4 m.  

The number of crowns differs for both setups, because of different diameter sizes, different area coverage 

and shadow affected areas for the optical data. To account for the fact that the LiDAR data was acquired in 

2016, one season before the hyperspectral and WV2 image, the aerial images from both years (2016 and 

2017) were compared. Crowns that showed visible changes or where the status of the crown could not be 

identified on both aerial images were removed. 

 

Analysis and results  

The analysis was carried out crown-based in WEKA as a Random Forest regression for symptom levels from 1 

= non-symptomatic to 5 = dead. Compared to the performance of five selected bands from the hyperspectral 

sensor on the full spectral range, additional LiDAR data only slightly improved the correlation in a stress 

detection from 0.940 to 0.948 for crowns larger 3 m diameter.  

In combination with the WV2 attributes, the additional LiDAR data improved the correlation from 0.89 to 

0.92 (RMSE from 0.48 to 0.43). The most important attributes for a combination of LiDAR and WV2 data are 

an NDVI on the red/NIR1 bands, followed by a ratio between the maximum height and the 50 percentile 

crown height (R_max_P50) and the average intensity values. The standard deviation of the first MNF band 

was also selected with high importance amongst other spatial attributes for crowns with a diameter larger 

than 4 m. Both the identification of dead and dying trees, as well as the detection of first stress symptoms, 

improved with additional LiDAR attributes. For more details about the selected attributes, see Meiforth et al. 

2020b [3]. 

 

Conclusion 

 For optical data with a spatial resolution larger than 1 m pixel size, like WorldView-2 satellite data, 
additional LiDAR data improves the stress detection significantly in a crown-based analysis, 
especially for small crowns. However, for the stress assessment, the datasets need to be available 
for the same season. 

 For optical data with a spatial resolution of 1 m or smaller, additional LiDAR data does not make 
much difference in the stress detection. If it is available for the same season, it can be added, but the 
results do not justify the much more elaborate process of a prior crown segmentation and a new 
data acquisition. 
.  
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Tableau 12: Improving optical stress analysis with LiDAR data  
 

 

Figure: Correlation coefficient for the detection of stress symptoms in five levels for different data 
combinations (M= 5 multispectral bands, L = LiDAR, A= Aerial). The analysis is based on a Random Forest 
Regression for 1280 crowns larger 3 m diameter. The multispectral bands cover the full spectral range. 
 

 

  
(a) (b) 

Figure: Correlations (a) and RMSE (b) of WV2 and LiDAR attributes for a Random Forest (RF) regression 
on refined stress symptom levels from 1 to 5 (1 – 1.5 – 2 – 2.5 -3 - 4 -5). The performance was tested for 
crowns with a mean diameter larger than 3 m (light colour, total 1089) and larger than 4 m (dark colour, 
total 895). The RF regression was carried out in 1000 repetitions for a random 3-fold split with a tree 
depth of eight. 
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3.4 Automatic stand and crown segmentation 

3.4.1 Stand segmentation 

The aim of the stand segmentation was to identify structurally homogenous forest stands. The stand 

segments were used to stratify the reference crowns for kauri and stress detection. They also enhanced the 

automatic crown segmentation by separating areas with small crowns from the areas with medium and large 

crown diameters. The stand units can also serve as reporting units to aggregate the results of a pixel-based 

classification. 

Data preparation and analysis 
Spike-free LiDAR crown height and surface models were developed with LAStools. Versions with and without 

a low pass filter were prepared. The blue band of the aerial image improved the segmentation. Based on the 

LiDAR data and the aerial images from 2016, a multiresolution segmentation in eCognition was developed, 

to segment different stand situations automatically. The largest unit of the segmentation matches the 

largest kauri crown diameters of ca. 35 m in the study area.  

The analysis is structured in four steps; the resulting maps of step 1 and 3 are displayed in Tableau 13: 

1. Sinks: In a first step, sinks are masked out – see blue coloured areas on the map. 

2. Segmentation: In a second step, the unclassified areas are segmented with a scale value of 120 on a 

0.15cm unit, which is suitable to cover the widest crowns in the area. 

3. Classification: In the third step, these segments were classified and reshaped in three different stand 

situations, small, medium and large to facilitate the crown segmentation. The main attributes for the 

classification are the height, the skewness, border contrast, contrast, homogeneity and standard 

deviation.  

To facilitate the pixel-based kauri and stress detection, only two stand situations, low and high, were 

distinguished, with a mean height threshold of 21 m. 

4. Adjustment: The polygons are dissolved and adjusted so that small "sliders" are merged into 

adjacent larger stands. 

 

Results 
 
Stand segmentation in preparation for the crown segmentation: 

 High stands and wide crown diameters  

including emerging high or wide crowns in the medium and low stands 

 Medium stands with medium to small crown diameter  

including emerging medium crowns in the low stands  

 Low stands with small and very small crown diameters 

 

Stand segmentation to stratify reference crowns in size classes: 

 High stands with a medium height > 21 m 

 Low stands with a medium height <= 21 m 
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Tableau 13: Stand segmentation on LiDAR data 
 

 
Map for step 1: Masking out sinks (blue). Reference crowns are marked in yellow. 
 

 
Map for step3: Classification of the segments in three stand situations: Large (red), 

medium (orange) and small (transparent), sinks are marked in blue 
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3.4.2 Crown segmentation 

The aim of the crown segmentation was to create a polygon for each crown that can be used in the crown-

based kauri identification and the detection of stress symptoms.  

Data preparation 
In addition to the layers that were prepared for the stand segmentation, a contrast and variance raster on 

the CHM were used in the analysis. The reference crowns for the kauri classification were complemented 

with additional crown polygons that were edited in the circular plots and the monitoring plots from 

Auckland University on the LiDAR CHM. 

Analysis 
A test of an inverse watershed delineation [47] showed that it is difficult to identify a unique top point in 

larger kauri stands.  

A combination of a multiresolution segmentation [48] and a region growing algorithm for the small stands 

was implemented in eCognition. The algorithm starts with a segmentation of the largest crowns and moves 

down level by level from a scale of 120 down to 5 for the smallest crowns. For each stand situation, 

additional sinks are identified, that function as breakpoints for the crown segmentation. A free-flowing 

unregulated segmentation and a regulated segmentation with defined shape and compactness values are 

combined on each level of the analysis. After the segmentation on each level, the correctly segmented 

polygons are selected in a supervised classification based on the reference crowns. The attributes for the 

classification are chosen with a J48 classifier in WEKA. The selected polygons are marked as finished results; 

the other polygons go back into the segmentation process for the next lower level. 

Progress 
The stand segmentation was completed. The algorithms for the crown segmentation and a tile-based 

workflow, as well as a method for the accuracy assessment, were developed. So far, the best thresholds and 

attributes for the large to medium crowns were defined. The segmentation of small crown sizes is still under 

development.  

Findings 

 A multiresolution segmentation in eCognition performed better for the crown segmentation than an 

inverse watershed segmentation. The multiresolution segmentation allows for the integration of texture 

layers and potentially also aerial and satellite images, given that these match the LiDAR data. 

 While single standing trees and erased crowns are relatively easy to detect, the crown segmentation in 

denser stands with one height level is more challenging. Here the aim is to segment the crowns 

homogenous units that allow the detection of changes. The algorithm is adjusted to rather over-segment 

(several polygons per crown) than under-segment (one polygon covers several crowns). 
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Tableau 14: Crown segmentation on LiDAR data 
 

 
Map: Automatically segmented crowns in eCognition on the LiDAR data. Scale 
120 to 40. (background: LiDAR Crown Height Model from 2016).  

 

 
Map: Same segmentation as above, with the aerial image from 2016 as 
background. 
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3.5 Main challenges and lessons learned 

Delay in the data acquisition 
All data sets that were ordered for this project were delayed, from 2 months for the first LiDAR data to over 

a year for both the hyperspectral, WV02 and 2nd LiDAR set. While the organizational problems might be 

reduced in future when everybody gains more experience, the cloudy and windy weather will be an issue 

and possibly even more so with the future effects of climate change. They require larger time windows for 

the acquisition. 

Spatial accuracy of remote sensing data 
The combination of different data acquisitions requires high spatial accuracy. The data should be 

orthorectified on a LiDAR-derived surface model (DSM) if they should be used in the automatic analysis. As 

an alternative to LiDAR data, the use of a DSM from stereo images should be tested.  

Translation of stress symptoms to health categories 
The stress symptom levels from 1 to 5 need to be interpreted to translate them into health categories. Apart 

from environmental aspects, the size of the crowns should be considered. The more open canopies of 

mature kauri crowns show a certain amount of branch material and internal shadows, even in a healthy 

state.  

Reference data and analysis of symptom classes 
In high and dense forest stands, high resolution RGB aerial images (<=15cm pixels size) from the same 

season are better suited to assess stress symptoms in the canopy than the ground field data. An additional 

near-infrared band in addition to the RGB bands would make it easier to identify the state of symptom 

classes. 

Spatial accuracy of field data and GPS data taken from a helicopter 
The field survey data of Auckland Council could not be clearly located on the LiDAR crown height model, due 

to a low GPS accuracy (up to 15 m deviation).  

To identify individual tree crowns on oblique photos taken from a helicopter also proved to be difficult and 

time-consuming, with deviation up to 90 m for the GPS points from the accurate position on the LiDAR 

crown height model (CHM).  

Elaborate hyperspectral processing 
The atmospheric correction and georeferencing of the hyperspectral was elaborate and required expert 

knowledge. In future acquisitions, the hyperspectral sensor should be flown under wind still conditions with 

high overlap between the stripes of at least 30%. Moreover, high accuracies of the on-board GPS and IMU 

are important. An updated sensor model and the latest laboratory measurements should be provided from 

the flight company. 
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4 Conclusions and outlook 

Integrating remote sensing in a kauri monitoring strategy 

The overall objectives of this study to automatically identify kauri trees and describe canopy stress 

symptoms with remote sensing data was achieved.  

This study presents important findings on the use of remote sensing as part of a comprehensive kauri 

monitoring strategy. The identification of kauri trees or stands can be based on an airborne multispectral 

sensor with bands in the visible to far near-infrared range with high user's- and producer's accuracies over 

94% in a pixel-based analysis. Alternatively, a crown-based approach to locate kauri crowns in a combination 

of LiDAR with multispectral data in the visible to NIR1 range can be used. It results in lower accuracies 

around 90%, depending on the spatial resolution and class definition. The automatic kauri detection with 

remote sensing data should be complemented with existing knowledge about kauri locations from fieldwork 

and airborne surveys.  

For an object-based analysis, LiDAR data can be used for the segmentation of crowns. The minimum crown 

diameter for segmentation should be chosen according to the spatial resolution of the sensor used for stress 

detection. Stands with smaller crowns should be segmented in homogenous units.  

While the best bands for kauri identification are located in the NIR2 spectral region, stress detection only 

requires standard bands in the visible to NIR1 spectral range up to 970 nm. A cost-efficient method for 

repeated monitoring of stress symptoms could be based on WorldView-2 satellite data for crown and 

canopy segments larger than 4 m in diameter with a correlation of 0.89 for five symptom levels. If possible, 

the attributes should include the maximum crown height based on LiDAR data for stratification in growth 

stages. Higher correlations for the stress detection (0.93) and smaller object sizes can be realized with more 

expensive airborne multispectral data, with bands in the green to NIR1 spectral range. 

The acquisition planning should allow for regular monitoring as well as the flexibility to capture special 

events, such as the effects of storms or droughts. Matching high-resolution aerial images (< 15 cm) from the 

same season for representative stands can serve as a reference. After significant structural changes in the 

forest (e.g. caused by severe dieback or a storm), the LiDAR acquisition and segmentation of crowns and 

stands should be repeated. Dead and dying trees should be documented since they are soon overgrown.  

Further details regarding the acquisition, the monitoring method and the presentation of the final maps 

should be developed in cooperation between the researchers, the management, including local Maori, and 

concerned stakeholder groups. This includes the choice of the multispectral sensor, which depends on the 

required spatial resolution, size of the area, terrain situation and available funding. 

 

Support for other research areas and management decisions 

Remote sensing allows to detect early changes in the leaf composition or top branches that are difficult to 

map in the field. It helps to set priorities for the field sampling and measures, locate trees that are non-

symptomatic in infected stands to test for resistance, and monitor the effectiveness of measures like the 

closing of paths. It can help to narrow down the cause of stress symptoms and correlations to a possible PA 

infection by analyzing the change of stress symptom patterns over time and spectral indices related to 

different types of stress. Remote sensing can also help to better understand the extent, the speed, pathways 

of the infection, especially when changes in stress symptoms can be documented over a longer period, e.g. 

with historical satellite images.  
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Suggestions for further research 

Further research should prioritize the use of LiDAR data for an automatic crown- and stand-segmentation 

and for its contribution to identifying kauri crowns in combination with multispectral data. As part of this 

study, a method for an automatic crown-segmentation based on LiDAR height models was developed, and 

the identification of kauri with LiDAR and WV2 data was tested. These analyses showed promising results 

and should be further developed. 

The use of time series over different seasons for kauri identification, especially the bright green spring 

aspect, should be analyzed. Change detection in time series for the same season can help to distinguish the 

progress of infection from other stress factors like drought and to identify possible transmission pathways. 

Higher spatial resolution data (e.g. from UAV), quantitative measurements of stress reactions in crowns and 

controlled experiments in pot trials could help to obtain a better understanding of canopy stress responses 

and serve as a reference for satellite analysis. 

A better understanding of the spectral characteristics and stress responses in other species is necessary for 

the analysis of mixed stands and wall-to-wall forest health monitoring. Crown spectra from an airborne 

hyperspectral image can be used for spectral unmixing to analyze the species composition in heterogeneous 

stands. This approach can also improve the use of optical remote sensing data with a lower spatial 

resolution, such as the freely available Sentinel-2 and Landsat-8 sensor systems.  

In combination with the higher frequency and longer duration of drought periods caused by climate change, 

kauri dieback disease could contribute to a shift in species composition in New Zealand kauri forests. Long-

term monitoring should include all the main canopy species and focus on the composition and functions of 

the forest ecosystem. 
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5 Abbreviations 

CHM Crown Height Model (a ground normalized DSM) 

DBH Stem diameter at breast height 

DSM Digital Surface Model 

DTM Digital Terrain Model 

FWHM Full width at half maximum 

GCP Ground Control Point 

GNNS Global Navigation Satellite System 

GPS Global Positioning System 

LiDAR Light Detection and Ranging 

MNF Minimum Noise Fraction Transformation 

MPI Ministry for Primary Industries 

NIR Near-infrared 

PAN Panchromatic, black and white band  

PC Principal component 

PA Phytophthora agathidicida 

RPC Rational Polynomial Coefficient 

SWIR Short Wave Infrared 

VIS Visible  
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7 Appendix 

7.1 Support for the project 

The Kauri Dieback Program under the Ministry for Primary 

Industries financed the main research costs, including most of 

the remote sensing data. https://www.kauridieback.co.nz/ 

 

 
The University of Canterbury (UC) provided the main 

scholarship (UC doctoral) to cover the living costs for three 

years, some of the field equipment and a laptop. The main 

supervisor in New Zealand, Professor David Norton, is based at 

the School of Forestry at UC. 

  

 

The University of Trier provided most of the software licenses. 

The main supervisor in Germany, Professor Joachim Hill and the 

co-supervisor Dr. Henning Buddenbaum are based at 

Department of environmental Remote Sensing and 

Geoinformatics 

 

 

Auckland Council provided the main support during the 

fieldwork in the Waitakere Ranges, including data, a field 

assistant, safety backups and accommodation. 

https://www.aucklandcouncil.govt.nz/ 

 

 

FrontierSI (former CRCSI) financed two stripes of LiDAR data 

flown with the sensor that was used in Northland. They also 

helped with a top-up scholarship for private living costs.  

https://frontiersi.com.au/ 

 

 

Free satellite data was provided through image grants from 

Digital Globe and Planet Labs (former Blackbridge).  

https://www.digitalglobe.com/ 

 

 
Manaaki Whenua Landcare Research provided expensive field 

equipment, a field spectrometer, a mapping grade GPS and a 

sun-photometer. Dr James Shepherd was a co-supervisor on 

the project.   https://www.landcareresearch.co.nz/ 

 

 

Rapidlasso and Harris Geospatial provided 3 months trial 

licenses for LAStools respective ENVI FLAASH. 

https://rapidlasso.com/  

https://www.harrisgeospatial.com/ 

 

 

Fredrik Hjelm, the founder of the living tree company and 

Joanne Peace, were excellent assistants during the field work. 

They showed extraordinary commitment, reliability, botanical 

knowledge and technical understanding. 

http://thelivingtreecompany.co.nz/ 

 

 

  

https://www.kauridieback.co.nz/
https://www.canterbury.ac.nz/engineering/schools/forestry/
https://www.uni-trier.de/index.php?id=11839
https://www.uni-trier.de/index.php?id=11839
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7.2 LiDAR data 

Flight attributes Jan-2016* Jan-2018 

Area All 3 study sites 2 stripes over the Cascades 

Date 30th of January 2016 14th of January 2018 

Sensor (HZ) Q1560 LiDAR sensor (400 kHz, 58° FOV) 360 Hz 

Swath Width Ca. 400m 1154m 

Overlap 55% side overlap 30% 

Single flight line pulse density  5 pulses / sqm 3.35 pts/m2 

Average point density 15 pulses /sqm >  35 returns / sqm 5.13 returns / sqm 

Average point spacing 0.17 m 0.44 m 

Ground avg. pnt density 0.5 – 1.6 returns / sqm 0.44 returns / sqm 

Ground avg. pnt spacing 0.4 -1.5 m 1.5 m 

Horizontal accuracy ±0.50m Standard Error (68% conf. level) No information provided 

Vertical accuracy ±0.10m Standard Error (68% conf. level) No information provided 

Waveform Yes No 

Pulse footprint NaN 0.23 m 

Classification 
ICSM Level 1: Default, Ground, Low 
vegetation (0-0.3m), Medium Veg. (0.3-2m), 
High Veg. (>2m), Buildings, Low/high points. 

 Ground <> Non-Ground 

*MPI 2016: Airborne LiDAR data for Kauri Dieback Project in the Waitakere Ranges. Flown 30.01.2016 

 

Airborne LiDAR 2016 all returns Airborne LiDAR 2016 only ground points 

  
Av. point spacing ca. 17cm 
Av. point density ca. 35 points/m2 
ca. 50% first return 

Point spacing 0.8 – 1.5m 
Point density: 1.5 – 0.4 p/m2 

 

 

 

             Crown Height Model                                               Variance                                       Maximum Curvature 

Figure: Illustration of LiDAR attributes for different canopy vegetation 
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7.3 Assessment scheme for stress symptoms in kauri crowns 

Table Assessment scheme for stress symptoms in kauri crowns based on RGB aerial images [38,49] for 
five canopy stress symptom classes and three crown sizes. 

Symptom 

class 

Description Size small 1 Size medium 1 Size large 1 

Value 1 

No 

Symptoms 

Leaves: green, 

green/blue;  

Canopy density: dense, 

no to small gaps;  

Bare branches: <1% 

   

Value 2 

First 

Symptoms

/ 

Open 

Crowns 

Leaf colour: green to 

yellowish;  

Canopy density: small 

gaps;  

Bare branches: 1 to 5% 

(small branches) 
   

Value 3 

Medium 

Symptoms 

Leaves: green with 

yellow or brown; 

Canopy density: small 

to medium gaps 

visible;  

Bare branches: 5%–

30%    

Value 4 

Severe 

Symptoms 

Leaves: yellow-green 

to brown;  

Canopy density: 

sparse, many gaps, 

understory partly 

visible;  

Bare branches: >=30% 

visible as linear 

structures  

Epiphytes and climbers 

possible 

   

Value 5 

Dead Trees 

Leaves: dead, brown 

leaves possible 

Epiphytes and climbers 

possible;  

Canopy density: Gaps 

and understory visible,  

Bare branches: 100%, 

dead branches visible 

as linear structures 
   

1. The crown size classes are defined according to their mean crown diameter, see 1. Non-symptomatic large and medium 

crowns with open canopies were given the value 1.5 in the analysis.   
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7.4 Kauri detection – images and maps 
 

Open stand with high trees 
(Kauri Grove Track) 

 Dense small stand with infected trees 
(Maungaroa Ridge Track) 

 

 

 
Aerial image 

 

 Aerial image 
 

 

 

 
MNF compression hyperspectral 

 

 MNF compression hyperspectral 

 

 

 
Classified image on 5 multispectral bands for 5 
classes. The image was post processed with a 
majority filter with different filter settings according 
to the stand situation. 

 Classified image on 5 multispectral bands for 5 
classes. The image was post processed with a 
majority filter with different filter settings 
according to the stand situation. 

  

 


